
Type-Safe Lists
by Jim Cooper

Looking at all that has been said
and written about Delphi, you

could be forgiven for thinking that
it is only a database development
tool. While Delphi is good for these
sort of applications, relational
databases are not necessarily the
ideal way to store data.

If the data is not persistent (that
is, it does not last beyond the
execution of the program) and will
fit into available memory, using
temporary database tables is an
unnecessary complication. More
importantly, object oriented data
structures can be very difficult to
store in tables. Imagine trying to
store a list of components and all
their property values in Paradox
tables, for instance! While there are
techniques that can, and some-
times must, be used to overcome
this problem, often a tidier solution
is desirable.

Fortunately, help is at hand.
Although Delphi doesn’t come with
a great range of data structures,
one of the most useful, the list, is
supplied in the form of TList. This
is not a component, so you won’t
find it on your palette, but you will
find it popping up all over the
place. The class TStringList uses it
for string storage, for example.
TList is easy to use, but you need
to create and destroy it explicitly.

You can add anything you like to
a TList, because TList actually only
holds pointers to other objects. So,
you can have a double, a string and
a TButton all in the same list.

There are, however, a couple of
restrictions that you should bear in
mind. One is that because TList is
actually implemented as an array
of pointers the maximum number
of items in a list is 16,380 in Delphi
1.0x (it’s something over 13 million
in Delphi 2). The other major
restriction is that a call to the Free
method will only destroy the
pointers, and not what they are
pointing at. Sometimes this is
desirable and sometimes not. I will
return to this point later.

Using TList
A brief run through of the main
properties and methods of TList is
probably in order, as a couple of
them are a bit tricky. The main
methods and properties are shown
in Table 1. There is also a property
called List which allows direct
access to the array of pointers, ie
these two expressions refer to the
same item: MyList.List^[0] and
MyList.Items[0].

I never use List as I find the Items
property is easier and makes code
easier to understand. The remain-
ing properties and methods are
described in Delphi’s on-line help.
You won’t find any mention in the
manuals, however.

Those of you who are used to list
structures in other environments
will have noticed that a few meth-
ods seem to be missing. For a
(brief) discussion of how to imple-
ment a descendant of TList that
disposes of all its items when it is
destroyed and has iterator
methods ForEach, FirstThat and
LastThat, see the excellent Delphi
Developer’s Guide by Pacheco and
Teixeira, pages 492-493.

Homogeneous Lists
As it stands, TList is great for
storing heterogeneous data. That

is, you can store different types of
items in the same list, the afore-
mentioned double, string and
TButton, for instance. This is not
usually the case, however, and you
often want a homogeneous list
where all the items are of the same
type, or at least, all derived from
the same ancestor class (because
then you can use polymorphism).
While you can do this by exercising
a little programming discipline, I
prefer to derive type-safe classes
that the compiler can type check
for me and that do not require type-
casting when used. I find that this
increases the readability and main-
tainability of my code. This article
will describe how this can be done,
and because it is a very mechanical
task, I will also present an expert to
automate the process. Along the
way I’ll show how to override prop-
erties and non-virtual methods.

A small example may help to
clarify a few points. Let’s suppose
you have a drawing program that
draws circles and squares, and that
you want to keep a list of what to
draw so that you can redraw as
required, when doing a screen re-
fresh, say. Listing 1 is the code for
a unit that does exactly this. On the
disk as file OLDSHAPE.PAS is a unit
called Shapes which contains the

Principal Methods:
Create The constructor
Free The destructor
Add Appends an item to the list
Insert Inserts an item at a given position in the list
First Returns the first item in the list
Last Returns the last item in the list
Delete Makes the pointer to the given item nil, the item itself

still exists
Remove Removes the pointer to the given item from the list
Principal Properties:
Count A run-time, read only property that returns the number

of items in the list
Items An indexed property that allows access to a given item in

the list; note that the first item in the list is Items[0] and
therefore the last is Items[Count-1]

➤ Table 1: TList principal methods and properties

36 The Delphi Magazine Issue 9

(very simple) code for the classes
of objects to draw. There is a base
class TMyShape which encapsulates
everything common to all shapes.
In this case, that is the size, posi-
tion and colour of the shape and
the fact that all shapes need to
know how to draw themselves onto
a canvas. The Draw method is over-
ridden in each of the descendant
shapes, so that the correct shape
is drawn, but each overridden Draw
method calls the Draw method
inherited from TMyShape. This is
because setting the pen and brush
colours is common to all shapes.

The unit MainForm contains the
code for a simple dialog that main-
tains a list of shapes to draw (see
Figure 1). To use the program, just
enter values for the type of shape
and its size, top and left positions
and colour and click the Add button.
Repeat this as often as you need.
Every time the Add button is
clicked, a new object is added to
the variable ShapeList. This is a
TList and therefore must be explic-
itly created and destroyed. This is
done in the form’s OnCreate and
OnDestroy event handlers.

unit Mainform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, StdCtrls, ExtCtrls, Shapes;
type
 TForm1 = class(TForm)
 Label1: TLabel;
 ShapeRadioGroup: TRadioGroup;
 SizeEdit: TEdit;
 PaintBox: TPaintBox;
 AddBtn: TButton;
 Label2: TLabel;
 TopEdit: TEdit;
 Label3: TLabel;
 ColourComboBox: TComboBox;
 Left: TLabel;
 LeftEdit: TEdit;
 procedure AddBtnClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormPaint(Sender: TObject);
 private
 ShapeList : TList;
 procedure DrawAllShapes;
 public
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.DrawAllShapes;
var i : Integer;
begin
 {Step through the list drawing each shape}
 for i := 0 to ShapeList.Count - 1 do
 TMyShape(ShapeList.Items[i]).Draw(PaintBox.Canvas);
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 {Ensure a colour is selected}
 ColourComboBox.ItemIndex := 0;

 {Create the list that will hold all the shapes to draw}
 ShapeList := TList.Create;
end;
procedure TForm1.FormDestroy(Sender: TObject);
var
 i : Integer;
begin
 {Free all the shapes memory}
 for i := 0 to ShapeList.Count - 1 do
 TMyShape(ShapeList.Items[i]).Free;
 {Free the list itself}
 ShapeList.Free;
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
 {Redraw all the shapes}
 DrawAllShapes;
end;
procedure TForm1.AddBtnClick(Sender: TObject);
const Colours : array[0..2] of TColor =
(clRed,clGreen,clBlue);
var NewShape : TMyShape;
begin
 {Create a new shape object based on the
 radio button selection}
 case ShapeRadioGroup.ItemIndex of
 0 : NewShape := TCircle.Create;
 1 : NewShape := TSquare.Create;
 end;
 {Set the properties of the new shape}
 NewShape.Size := StrToInt(SizeEdit.Text);
 NewShape.Top := StrToInt(TopEdit.Text);
 NewShape.Left := StrToInt(LeftEdit.Text);
 NewShape.Colour := Colours[ColourComboBox.ItemIndex];
 {Add the shape to the list of shapes}
 ShapeList.Add(NewShape);
 {Redraw everything in the list, as the new shape may
 cover old ones}
 DrawAllShapes;
end;
end.

➤ Listing 1

While this is all fairly straightfor-
ward, there are a couple of points
to note. One is that when adding a
new shape to ShapeList no type-
casting is necessary and the code
is nice and clear. However, there is
nothing to stop you adding some-
thing that is not a TMyShape. This
would result in an exception being
raised during the drawing and
destroying of the list. This isn’t
much of a problem in such a small
program, but in larger projects,
particularly when you are working
on someone else’s code, it may not
be so obvious what you can and
can’t do. The other point is that
every time you access an item in
ShapeList it must be typecast. For
instance, look at the code in the
DrawAllShapes method in Listing 1.

This sort of thing reduces the
readability of your code. What
would be nice is a list that only
holds TMyShape objects. Then the
compiler will complain if you try
and add some other sort of object
to the list and you wouldn’t have to
do typecasting quite so often. In
other words, we want to derive a
new list class that has all the
methods and properties of TList,
but will only hold items of type
TMyShape. What we need to do is

override all those methods and
properties that refer to type
Pointer and make them refer to
TMyShape instead. The relevant
declarations are shown in Listing 2
and are taken from the file DELPHI\

SOURCE\VCL\CLASSES.PAS (if you have
the VCL source) or DELPHI\

DOCS\CLASSES.INT (if you haven’t).
At first glance the source seems

to suggest that you cannot over-
ride any of them because none are
declared virtual. This is not actu-
ally necessary, as there are two
ways to override a method.

Firstly, you can use the override
keyword. This is the usual method,
but can only be applied to methods
which are declared as virtual. The
declaration of the new method
must also be identical. That is, the
number and types of parameters
must be identical, it must return
the same type if it is a function and
it must have the same name. You
will usually call the inherited
method in the implementation of
the new method. A common exam-
ple is the destructor of any new
classes you declare. If you look at
Listing 3 you will see an example of
a simple class that encapsulates a
font. The virtual Destroy method in
TObject is overridden in TMyObject

May 1996 The Delphi Magazine 37

so that the font is freed first and
then the inherited method is called
to free all resources associated
with TObject.

The second option is not to use
the override keyword. Seems obvi-
ous really. You can do this to both
virtual and non-virtual methods.
The Delphi manual tells us that this
will replace the inherited method.
However, we can still call the inher-
ited method from within the new
method. A common example here
is the constructor of new classes
that you declare. In Listing 3 you
will see that I have done this for the
Create method. The reason for
doing this should hopefully be
clear. When a TMyObject is created,
I can pass a parameter to initialise
it. I believe this flexibility is why the
Create method of TObject is not
declared virtual.

Overriding properties is a bit
trickier, but not much. There are
again two ways to do it.

If the property has access meth-
ods, that is, the read and write
parts of a property declaration call
methods rather than directly ac-
cess a field of the class, then you
can override those methods. We
will do this with the protected
methods Get and Put, which are
used by the property Items in
Listing 2. Incidentally, this shows
why it is always a good idea to
make accessors protected instead
of private. You never know when it
might be necessary to get at them.

If the property does not have
access methods, or you want it to
use different ones, re-declare it. We
will have to do this with the List
property because it just returns a
pointer to the internal array of
pointers that is used by TList. We
will have to declare a new type here
and declare an access method that
basically just performs a typecast.
This works because an array of
TObject is actually an array of
Pointer. I don’t think this is particu-
larly elegant, though, and in fact I
never use the List property,
because I think using Items makes
for clearer code.

So, all we need to do to make a
type-safe list is derive a new class,
TShapeList say, from TList, then
re-declare all the properties and

methods from Listing 2, replacing
all occurrences of Pointer with
TMyShape, and those of TList with
TShapeList, then finally implement
all the overridden properties and
methods, performing the appropri-
ate typecasts on the inherited
methods.

The result is shown in Listing 4.
If we work our way through this
listing, the application of the tech-
niques I’ve just described should

become clear. In the interface
section, the first declarations are:

PMyPointerList =
 ^TMyPointerList;
TMyPointerList =
 array[0..MaxListSize - 1] of
 TMyShape;

These declarations are used to
override the List property, which
we want to return a pointer to an

➤ Figure 1

PPointerList = ^TPointerList;
TPointerList = array[0..MaxListSize - 1] of Pointer;
TList = class(TObject)
protected
 function Get(Index: Integer): Pointer;
 procedure Put(Index: Integer; Item: Pointer);
public
 function Add(Item: Pointer): Integer;
 function Expand: TList;
 function First: Pointer;
 function IndexOf(Item: Pointer): Integer;
 procedure Insert(Index: Integer; Item: Pointer);
 function Last: Pointer;
 function Remove(Item: Pointer): Integer;
 property Items[Index: Integer]: Pointer read Get write Put; default;
 property List: PPointerList read FList;
end;

➤ Listing 2

TMyObject = class(TObject)
 fFont : TFont;
 constructor Create(InitialFont : TFont);
 destructor Destroy; override;
end;
implementation
constructor TMyObject.Create(InitialFont : Tfont);
begin
 inherited Create; {Calling a nonvirtual inherited method}
 fFont := Tfont.Create;
 fFont.Assign(InitialFont);
end;
destructor TMyObject.Destroy;
begin
 fFont.Free;
 inherited Destroy; {Calling a virtual inherited method}
end;

➤ Listing 3

38 The Delphi Magazine Issue 9

array of TMyShape objects (in TList
it returns a pointer to an array of
Pointer types, remember). We just
re-declare the List property, as
shown, which replaces the one in
TList (see Listing 2). It will now
return a pointer to an array of
TMyShape objects. The access
method GetList is similarly re-
declared and hence also replaces
the GetList method of TList.

In the implementation section,
the function GetList must be
defined because we have re-
declared it. Note that all we need to
do is call the inherited property
and perform a typecast.

This is the most complicated
action and everything else is easy
from here. Take the Items property,
for example. We now want it to
return a TMyShape instead of a
Pointer, so we re-declare it as
shown. Because it has access
methods, we need to ensure they
use TMyShape instead of Pointer.
They are also not virtual, so we
re-declare them (in the protected
section this time). Because we
have re-declared them, they need
new definitions in the implementa-
tion section. Note that once again,
all we do is call the inherited
methods, using typecasts where
necessary. All the other methods
are overridden in exactly the same
way.

This is now a completely type-
safe class and does not require
typecasting of the list items any-
where in your code. For instance,
using the definition for TMyObject in
Listing 3, we can do things like this:

Label1.Font.Assign(
 MyList.First.fFont);
MyList.Items[3].fFont.Name :=
 ’Arial’;

It also means that we can tidy up
the code in the example given in
Listing 1. In the MainForm unit we
need to change the declaration of
ShapeList to:

ShapeList : TShapeList;

When ShapeList is created in
FormCreate it needs to be like this:

ShapeList := TShapeList.Create;

We can now also remove the type-
casting in the routines FormDestroy
and DrawAllShapes.

If, in the future, anybody modi-
fies your code and by mistake tries
to add something that is not a de-
scendant of TMyShape to ShapeList,
they will get an error at compile
time, instead of an exception at run
time.

I have made one more refine-
ment and added new methods to
TShapeList. It is better encapsula-
tion to make operations on the list
methods. This way all code that
operates on the list is in the one
place and this makes later modifi-

cations easier. I have overridden
the Destroy destructor so that it
does the iteration through the list
freeing the shape objects and I
have introduced a new method
called DrawAllShapes that does the
drawing. The new Shapes unit
which includes the TShapeList
class is included on the disk and
the final version of the MainForm
unit is shown in Listing 5.

TComponentList
By the way, there is a class called
TComponentList in DSGNINTF.PAS
in your DOCS directory (it has a
very small help file entry) that is a

unit NewList;
interface
uses Classes;
type
 PMyPointerList = ^TMyPointerList;
 TMyPointerList = array[0..MaxListSize - 1] of TMyShape;
 TShapeList = class(TList)
 protected
 function Get(Index : Integer) : TMyShape;
 procedure Put(Index : Integer;Item : TMyShape);
 function GetList : PMyPointerList;
 public
 function Add(Item : TMyShape) : Integer;
 function First : TMyShape;
 function Expand : TShapeList;
 function IndexOf(Item : TMyShape): Integer;
 procedure Insert(Index : Integer;Item : TMyShape);
 function Last : TMyShape;
 function Remove(Item : TMyShape) : Integer;
 property Items[Index : Integer] : TMyShape read Get write Put;
 property List : PMyPointerList read GetList;
 end;

implementation
function TShapeList.GetList : PMyPointerList;
begin
 Result := PMyPointerList(inherited List);
end;
function TShapeList.Get(Index : Integer): TMyShape;
begin
 Result := TMyShape(inherited Get(Index));
end;
procedure TShapeList.Put(Index : Integer;Item : TMyShape);
begin
 inherited Put(Index,Item);
end;
function TShapeList.Add(Item: TMyShape) : Integer;
begin
 inherited Add(Item);
end;
function TShapeList.Expand : TShapeList;
begin
 Result := TShapeList(inherited Expand);
end;
function TShapeList.First : TMyShape;
begin
 Result := TMyShape(inherited First);
end;
function TShapeList.IndexOf(Item : TMyShape) : Integer;
begin
 Result := inherited IndexOf(Item);
end;
procedure TShapeList.Insert(Index : Integer;Item : TMyShape);
begin
 inherited Insert(Index,Item);
end;
function TShapeList.Last : TMyShape;
begin
 Result := TMyShape(inherited Last);
end;
function TShapeList.Remove(Item: TMyShape): Integer;
begin
 Result := inherited Remove(Item);
end;
end.

➤ Listing 4

May 1996 The Delphi Magazine 39

type-safe list of TComponent objects.
Borland used an alternative ap-
proach. They encapsulated a TList
inside a new class and declared
those methods and properties they
wanted. It is not a very complete
implementation and seems a less
object-oriented approach, rather
like encapsulating a VBX instead of
inheriting from a Delphi control. It
does have the advantage that if you
want to hide some of the methods
or properties of TList you can do it
simply by not declaring them. In
either case, you can add your own
methods and properties to your
heart’s content.

Experts To The Rescue...
The procedure I have described is
obviously very mechanical and is
crying out for an expert to do the
work. I have included a very simple
one on the disk as LISTEXP.PAS,
shown in Figure 2.

It has two edit boxes: one for the
name of the new list class (eg
TShapeList) and one for the type of
item to store (eg TMyShape). Note
that while the procedure is the
same for inbuilt Delphi types like
Double or Integer, the expert as-
sumes the item type is a descen-
dant of TObject. There are also two

➤ Figure 2: The type-safe list expert in action

memo fields, one of which is invis-
ible at run-time and stores the tem-
plate of the code that will get
generated. I did it this way to make
it easy for you to change the gener-
ated code if you don’t like my cod-
ing style. The other memo will
contain the generated code after
you press the Generate button. You
can cut and paste this into the re-
quired unit. A neater solution

would be to use the Delphi Tools
interface to create a new unit, but
(to quote the classics) I leave this
as an exercise for the reader...

Jim Cooper works at Sybiz
Software in Newbury, UK (site of
the infamous bypass!) and can be
contacted on CompuServe as
101641,440

unit Mainform;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, Forms, Dialogs, StdCtrls,
 ExtCtrls, Shapes;
type
 TForm1 = class(TForm)
 Label1: TLabel;
 ShapeRadioGroup: TRadioGroup;
 SizeEdit: TEdit;
 PaintBox: TPaintBox;
 AddBtn: TButton;
 Label2: TLabel;
 TopEdit: TEdit;
 Label3: TLabel;
 ColourComboBox: TComboBox;
 Left: TLabel;
 LeftEdit: TEdit;
 procedure AddBtnClick(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormPaint(Sender: TObject);
 private
 ShapeList : TShapeList;
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
 {Ensure a colour is selected}
 ColourComboBox.ItemIndex := 0;
 {Create the list that will hold all the shapes to draw}
 ShapeList := TShapeList.Create;
end;
procedure TForm1.FormDestroy(Sender: TObject);

var i : Integer;
begin
 { Free the list and all the shapes it contains,
 because Free calls Destroy if ShapeList was
 successfully created, and TShapeList.Destroy now
 cleans up after itself.}
 ShapeList.Free;
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
 {Redraw all the shapes}
 ShapeList.DrawAllShapes(PaintBox.Canvas);
end;
procedure TForm1.AddBtnClick(Sender: TObject);
const
 Colours : array[0..2] of TColor =
 (clRed,clGreen,clBlue);
var
 NewShape : TMyShape;
begin
 {Create a new shape object based on the radio button
 selection}
 case ShapeRadioGroup.ItemIndex of
 0 : NewShape := TCircle.Create;
 1 : NewShape := TSquare.Create;
 end;
 {Set the properties of the new shape}
 NewShape.Size := StrToInt(SizeEdit.Text);
 NewShape.Top := StrToInt(TopEdit.Text);
 NewShape.Left := StrToInt(LeftEdit.Text);
 NewShape.Colour := Colours[ColourComboBox.ItemIndex];
 {Add the shape to the list of shapes}
 ShapeList.Add(NewShape);
 {Redraw everything in the list, as the new shape may
 cover old ones}
 ShapeList.DrawAllShapes(PaintBox.Canvas);
end;
end.

➤ Listing 5

40 The Delphi Magazine Issue 9

	Using TList
	Homogeneous Lists
	TComponent List
	Experts To The Rescue

